JOURNAL OF NEUROLOGY AND PSYCHOLOGY RESEARCH

MINI REVIEW Open Access

Aphasia Associated with Brain Tumour and the Utility of Blood Flow-Related Measures

Abhishek Budiguppe Panchakshari*

* Assistant Professor in Language Pathology, Centre of SLS, AIISH, Mysore, India

Received date: May 06, 2025, Accepted date: May 12, 2025, Published date: May 20, 2025.

Copyright: ©2025 Abhishek Budiguppe Panchakshari. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding Author: Abhishek Budiguppe Panchakshari. Assistant Professor in Language Pathology, Centre of SLS, AIISH Mysore, India.

Abstract

Aphasia, a language disorder consequent to brain injury. It can significantly impact communication abilities and impact the quality of life. The current study examines aphasia resulting from brain tumours, emphasizing on the patho-physiology of the same. It also focusses on role of imaging techniques in assessing blood flow to brain regions pivotal for language processing. The studies in this direction have shown that lesions in specific areas such as the left hemisphere, specially Broca's and Wernicke's areas, leading to expressive and receptive deficits. Furthermore. advancements pertaining to neuroimaging, such as arterial spin labelling (ASL) and functional MRI (fMRI), have revolutionised the study of cerebral hemo-dynamics in patients with aphasia. This review also throws light on integrating blood flow-related measures with the clinical assessments and designing the rehabilitation strategies for individuals with aphasia resulting from brain tumours

Keywords: Brain, Behaviour, Blood Flow, Hemodynamic measures, Neoplasm

Background

complex Aphasia regarded communication disorder. At the outset, it can arise due to lesions in the areas of brain pivotal for language processing. Aphasia is usually caused by stroke. Stroke can alter the blood flow to the brain. In addition to stroke, it can also result from tumours and traumatic brain injury. Tumour is considered as third leading cause of Aphasia and the current study focusses on aphasia resulting from brain injury. The brain tumours can have profound implications as it can alter the speech and language abilities and can hamper the quality of life. The impact of aphasia can extend beyond the linguistic boundaries limiting the social interactions, impacting the emotional well-being. Overall it can affect one's abilities to perform activities of daily living [1]. (Hence the condition has to be treated with serious concerns and applies to stroke as well as brain tumours.

Brain tumours can occur in various locations and then spread to the brain through the process of metastasis or can originate at the level of brain itself. It can sometimes invade the left cerebral hemisphere found to be important in language processing and can affect a multitude of language functions. Tumours affecting the Broca's area and Wernicke's aphasia can result in non-fluent and fluent aphasia respectively. The former can result in non-fluent and effortful speech while the latter can affect the comprehension and result in non-meaningful language output Furthermore, other types of aphasia, for instance like conduction aphasia, can arise from damage to the arcuate fasciculus (connection fibres connecting from Broca's area and Wernicke's area) [2].

The language difficulties seen in individuals with aphasia secondary to brain tumour is dependent the traits of the tumour like size, type, and location and the type of tumour. The direct impact of the tumour on the area affected and neural structures in the vicinity can lead to permanent changes, which in turn can affect the language processing capabilities dictated as changes in comprehension and expression. However, the extent of these changes can vary, based on the aforementioned traits related to tumour and factors such as the individuals age, cognitive reserve and pre-existing conditions such as infract [3].

The therapeutic interventions carried out post neuro-surgical removal of tumours, can result in rapid and dynamic shifts in language domains pertaining to comprehension and expression, this warrants the need continual assessment of language function. The regional cerebral blood flow measures is considered as a potential measure in estimating language functions.

The presentation of symptoms in individuals with aphasia presentation and the utilization of oxygen and glucose in the brain are related entities, and

researchers have relied on advanced imaging techniques for studying the same. The imaging technologies include arterial spin labelling (ASL) and functional magnetic resonance imaging (fMRI). These technologies facilitate in deciphering language function. These measures can provide insights in determining the the immediate effects of a tumour, in addition to this they also enable in determining the reorganization in the brain as it adapts to injury or changes [4].

The current research paper attempts to synthesize existing research on aphasia secondary to brain tumours and also sheds light on the utility of blood flow-related imaging in recognising, estimating and determining language deficits. It presents the pertinent studies and findings, highlighting the need for a multifaceted approach applicable to assessment and management. It also focusses on the utility of neuroimaging techniques fostering the understanding of the intricate relationships between brain and behaviours.

Discussion

2.1 Aphasia Types and Brain Tumour Localization

Aphasia is predominantly caused by stroke as mentioned above, however it is noteworthy that the brain tumours can also lead to aphasia. Brain tumours can occur in vivid forms and the clinical manifestation of the tumours can be significantly influenced by the loci of the tumour within the cerebral architecture. The language deficits exhibited by the patients is directly dependent on the specific neural structures affected by the tumour. The tumours can exert pressure on the structures sometimes neural and can cause inflammation or interrupt the blood flow.

The relationship between tumour grading and the aphasia type and severity can particularly influences both prognosis and treatment [5]. Research in this

direction patients with a high-grade gliomas are vulnerable to show rapid onset of symptoms. This could be due their aggressive nature of growth and the infiltration of surrounding areas. In contrast, the lowgrade tumours is associated with insidious onset of symptoms, this can possibly allot more time for the alternative pathways to take over for language processing. High grade gliomas can have a multitude of symptoms concerning expression and comprehension while low grade gliomas can manifest milder symptoms such as word finding and many a times the word finding difficulty itself may be a warning sign of the evolving Understanding the trajectory is pivotal for tumour. clinicians in providing timely support and designing therapeutic measures [6].

2.2 Pathophysiology of Aphasia in Brain Tumours

Understanding the pathophysiological mechanisms of the brain tumour associated with aphasia is important in clinical manifestations. deciphering the The pathophysiological mechanisms is usually discussed under two heads direct and indirect mechanisms. Direct pathological mechanisms involve the mass effect of the tumour; as tumours further expand, they can displace the brain structures in general and language areas in specific and can alter the mechanical pressure in the brain. In addition, infiltration of surrounding neural tissues can erupt the language areas, hampering the language function. Indirect mechanisms is often undermined but it can complicate the effects associated with the tumour growth. For example, oedema surrounding the tumour can raise the intracranial pressure, leading to compromise in the neural structure [7]. Further the brain tumours often lead to alter the neurovascular coupling (as the term indicates it can alter the dynamics between the neuronal structures/its activity and its vascular demands). The tumour may require greater blood supply owing to the enlargement of the structure. Subsequently, regions in vicinity to the tumours are deprived with the blood flow, this results in cognitive and linguistic deficits in the affected patients.

The neuroplasticity accounts for the recovery in patients with aphasia resulting from brain tumours. The brain's ability in reorganize itself as a response to the injury. This suggests accounts for the improved language functions in patients, especially when critical language areas are compromised and the surrounding areas take over its function or the brain cells regenerate post damage. The neuro plasticity capacity is more individual specific and is influenced by factors anagraphical factors such age and gender, as well as the neurological factors associated with stroke. Thus, therapeutic approaches may alleviate the neural plasticity, by facilitating the individual's existing capacities and leading to changes in behaviours.

2.3 Role of Blood Flow-Related Measures in Aphasia Assessment

Neuroimaging has revolutionized the assessment of language deficits associated with brain tumours. These techniques provide a comprehensive view into the dynamics of cerebral blood flow during the administration of linguistic tasks tapping different domains of language.

Functional MRI works on the Blood Oxygen Dependency Principle. It reflects changes in blood flow associated with neural activity recruited during a given task. The hemo-dynamic changes allows for mapping regions of activation during the performance of the given tasks. In neuro-pathological conditions, hemodynamic measures provide insights into the blood flow dynamics to the area evaded by tumour and it adjunct, it provides information on which areas are compensating for damaged regions. For instance, fMRI studies in persons with Broca's aphasia may have shown an evident increase in the activity of right hemisphere during the administration of linguistic task, this shows a shift functional hemispheric accounting for compensation [8]. This reorganization would enable in designing the rehabilitation approaches, this further can enable the compensatory networks and augments the

recovery efforts.

Arterial Spin Labelling is abbreviated as ASL. It quantifies the cerebral perfusion without using any contrasting agents. This can provide room for direct measurement of blood flow dynamics. Reduced perfusion in language-critical areas is evident in patients with aphasia associated with brain tumours.

The rate of perfusion is proportionate to the reveals important severity of language impairment [9]. Tracking changes in CBF over time provides insight on the efficacy of therapeutic intervention and relapse of tumours if any.

Implications for Clinical Practice

Integrating the hemo-dynamic measures into clinical practice is assumed to offer several advantages, particularly concerning the surgical planning and planning the plan of action for rehabilitation post tumour removal. Measures such as perfusion profiles carried out preoperatively can enable neurosurgeons to minimise the risks of postoperative language deficits, the effect of the procedure on language processing can also be deduced [10].

For instance, knowing which regions are critical for language can enable the surgeons to resect tumours preserving the areas entrusted in carrying out different functions.

Moreover, neuroimaging data can conform rehabilitation strategies by revealing which neural recruited during the recovery processes. For instance if ASL shows that the right hemisphere is compensating for damage in the left, therapeutic approaches in engaging these networks can be chosen and implemented as the plan of action. This individual therapy regimens, can be designed considering the persons neurovascular profile, and can have a bearing on enhancing the efficacy of rehabilitation.

Conclusion

Aphasia is linguistic deficit and is a condition vulnerable in people showing neoplasms in the cerebral cortex. This condition presents a complex and multifaceted challenge especially for individuals with brain tumours, the hemodynamic measures establishes an interface in understanding the brain's functional architecture and the consequences of tumour. Furthermore, delving deeper on the mechanisms of speech and language processing compromised as a consequence of brain injury from tumour can enable in employing the right rehabilitation measures. The hemodynamic measures in adjunct to the imaging techniques has revolutionised the approaches in aphasia assessment and treatment. Combating the conventional linguistic assessments with regional cereberal flow measures can facilitate the understanding of the presenting language in persons with aphasia.

References

1. van Kessel E, Baumfalk AE, van Zandvoort MJE, Robe PA, Snijders TJ. Tumor-related neurocognitive dysfunction in patients with diffuse glioma: a systematic review of neurocognitive functioning prior to anti-tumor treatment. J Neuro Oncol. 2017; 134(1):9–18. https://doi.org/10.1007/s11060-017-2503-z.

- 2. Anderson SW, Damasio H, Tranel D. Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol. 1990;47(4):397–405. https://doi.org/10.1001/archneur.1990.00530040039017
- 3. Tomasino B, Ius T, Skrap M, Luzzatti C. Phonological and surface dyslexia in individuals with brain tumors: performance pre-, intra-, immediately post-surgery and at follow-up. Hum Brain Mapp. 2020;41(17):5015–5031. https://doi.org/10.1002/hbm.25176

- 4. Whittle IR, Pringle AM, Taylor R. Effects of resective surgery for left-sided intracranial tumours on language function: a prospective study. Lancet. 1998;351(9108): 1014–1018. https://doi.org/10.1016/S0140-6736(97)08295-0
- 5. Basso A, Gardelli M, Grassi MP, Mariotti M. The role of the right hemisphere in recovery from aphasia. Two case studies. Cortex. 1989 Dec;25(4):555-66. doi: 10.1016/s0010-9452(89)80017-6. PMID: 2612175.
- 6. Recht LD, McCarthy K, O'Donnell BF, Cohen R, Drachman DA. Tumor-associated aphasia in left hemisphere primary brain tumors: the importance of age and tumor grade. Neurology. 1989 Jan;39(1):48-50. doi: 10.1212/wnl.39.1.48. PMID: 2909913.
- 7. Grossman M, Powers J, Ash S, McMillan C, Burkholder L, Irwin D, Trojanowski JQ. Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal

- degeneration pathology. Brain Lang. 2013 Nov;127(2):106-20. doi: 10.1016/j.bandl.2012.10.005. Epub 2012 Dec 4. PMID: 23218686; PMCID: PMC3610841.
- 8. Armstrong DJ, Horner J, Fedor KH, Massey EW. Aphasia associated with intracerebral neoplasms. In: Brookshire R, ed. Clinical Aphasiology: Proceedings of the Conference 14. Seabrook Island, SC Minneapolis, MN: BRK Publishers; 1984:85–93
- 9. Davie GL, Hutcheson KA, Barringer DA, Weinbers JS, Lewin JS. Aphasia in patients after brain tumour resection. Aphasiology. 2009 Sep;23(9):1196–1206. https://doi.org/10.1080/02687030802436900
- 10. Banerjee P, Leu K, Harris RJ, et al. Association between lesion location and language function in adult glioma using voxel-based lesion-symptom mapping. NeuroImage. Clinical. 2015;9:617–624.

https://doi.org/10.1016/j.nicl.2015.10.010

© The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ready to submit your research? Choose RN and benefit from:

- ♣ Fast, convenient online submission.
- Thorough peer review by experienced researchers in your field.
- Rapid publication on acceptance.
- Support for research data, including large and complex data types.
- Global attainment for your research.
- At RN, research is always in progress.
- Learn more: researchnovelty.com/submission.php

